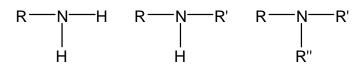


Corso di Laurea Magistrale in Ingegneria Biomedica Complementi di Chimica e Biochimica per le Tecnologie Biomediche

Ammine

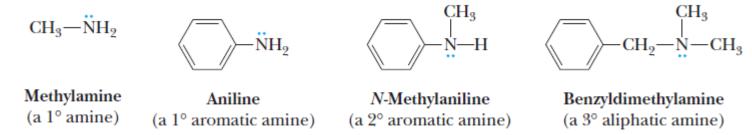

Francesca Anna Scaramuzzo, PhD

Dipartimento di Scienze di Base e Applicate per l'Ingegneria - Centro di Nanotecnologie Applicate all'Ingegneria francesca.scaramuzzo@uniroma1.it

Dipartimento di

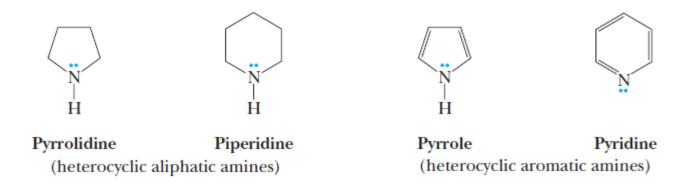
SCIENZE DI BASE E APPLICATE PER L'INGEGNERIA

Definizione e struttura



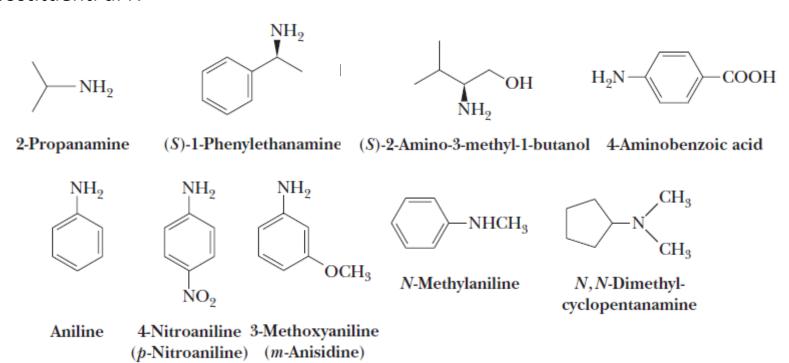
Ammine: composti derivati dell'ammoniaca in cui uno o più idrogeni sono sostituiti da gruppi alchilici o arilici

A. primaria A. secondaria A. terziaria


Ammine alifatiche: ammine in cui N è legato solo a gruppi alchilici

Ammine aromatiche: ammine in cui N è legato ad almeno un gruppo arilico

Ammine eterocicliche: ammine in cui N è il termine di un anello


Ammine eterocicliche aromatiche: ammine in cui N è il termine di un anello aromatico

Nomenclatura IUPAC

Prefisso → Nome dell'alcano precursore meno lettera finale -o
Suffisso → Gruppo funzionale → -ammina

- Per la numerazione dei sostituenti e le priorità in caso di molecole polifunzionali valgono tutte le regole già viste
- La più semplice ammina aromatica si chiama anilina
- Ammine aromatiche polisostituite sull'anello vengono denominate come derivati dell'anilina
- Le ammine secondarie e terziarie vengono denominate come ammine primarie sostituite
- Il gruppo più grande viene considerato il precursore, i gruppi più piccoli vengono considerati come sostituenti di N

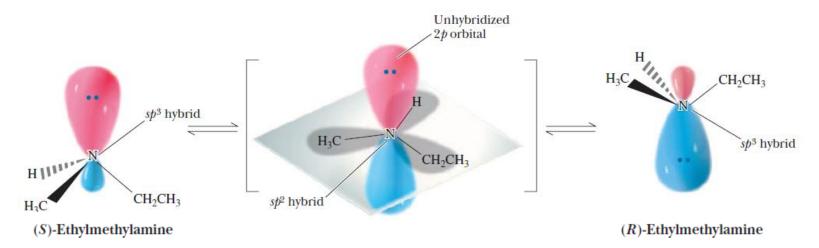
Nomenclatura comune

Prefisso → Nome gruppo alchilico o arilico precursore

Suffisso → Gruppo funzionale → -ammina

Ioni

 Se 4 atomi sono legati a un N, N è quaternario e il composto è nominato come sale dell'ammina corrispondente


Esercizio: Scrivere il nome IUPAC e, dove possibile, anche il nome Ph NH_2 NH_2 Ph CH_2NMe_3 OH comune dei seguenti composti

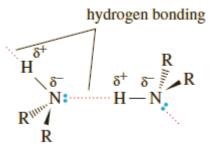
Esercizio: Scrivere le formule di struttura dei seguenti composti:

a) difenilammina b) trans-2-amminocicloesanolo c) isopropilammina d) Cloruro di tetrametilammonio

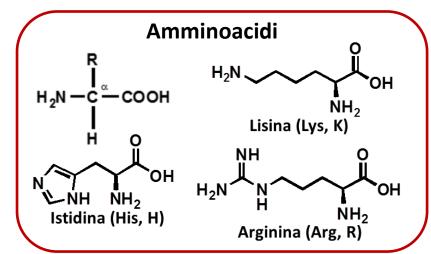
Chiralità nelle ammine

• Le ammine con 3 sostituenti diversi e un doppietto elettronico libero sono chirali, ma interconvertono rapidamente (non è possibile separare gli enantiomeri)

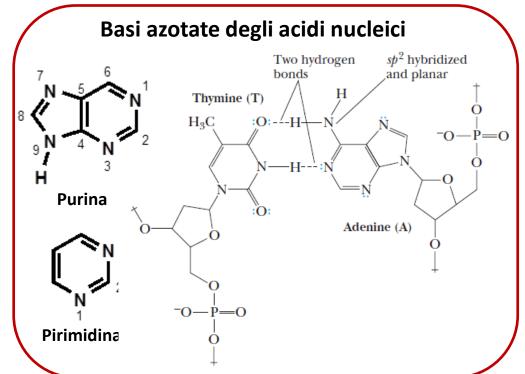
- L'interconversione è impedita per gli ioni ammonio
- Le fosfine e gli ioni fosfonio si comportano allo stesso modo, ma l'energia di attivazione per l'inversione piramidale è maggiore (è più facile risolvere fosfine chirali)


Proprietà fisiche delle ammine

- Sono composti polari
- Le ammine a basso peso molecolare emanano cattivo odore
- Le ammine primarie e secondarie formano legami H intermolecolari più deboli di quelle dei corrispondenti alcoli


	CH ₃ CH ₃	CH ₃ NH ₂	CH ₃ OH
MW (g/mol)	30.1	31.1	32.0
bp (°C)	-88.6	-6.3	65.0

- Sono più solubili in acqua degli idrocarburi di peso molecolare comparabile
- P.e.e p.f. aumentano con l'aumentare del numero e della lunghezza dei sostituenti


Name	Structural Formula	mp (°C)	bp (°C)	Solubility in Water
Ammonia	NH_3	-78	-33	Very soluble
Primary Amines				
Methylamine	CH_3NH_2	-95	-6	Very soluble
Ethylamine	$CH_3CH_2NH_2$	-81	17	Very soluble
Propylamine	$CH_3CH_2CH_2NH_2$	-83	48	Very soluble
Isopropylamine	$(CH_3)_2CHNH_2$	-95	32	Very soluble
Butylamine	$CH_3(CH_2)_3NH_2$	-49	78	Very soluble
Benzylamine	$C_6H_5CH_2NH_2$	_	185	Very soluble
Cyclohexylamine	$C_6H_{11}NH_2$	-17	135	Slightly soluble
Secondary Amines				
Dimethylamine	$(CH_3)_2NH$	-93	7	Very soluble
Diethylamine	$(CH_3CH_2)_2NH$	-48	56	Very soluble
Tertiary Amines				
Trimethylamine	$(CH_3)_3N$	-117	3	Very soluble
Triethylamine	$(CH_3CH_2)_3N$	-114	89	Slightly soluble
Aromatic Amines				
Aniline	$C_6H_5NH_2$	-6	184	Slightly soluble
Aromatic Heterocyclic Amines				
Pyridine	C_5H_5N	-42	116	Very soluble

Le ammine in natura e in chimica farmaceutica

Neurotrasmettitori e neurormoni

$$\begin{array}{c|cccc} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\$$

Basicità delle ammine

Methylamine

Methylammonium hydroxide

- Si comportano da basi deboli
- Per indicare la loro forza basica, si fa riferimento al pK_a dell'acido coniugato

$$CH_3NH_3^+ + H_2O \Longrightarrow CH_3NH_2 + H_3O^+$$

$$K_a = \frac{[CH_3NH_2][H_3O^+]}{[CH_3NH_3^+]} = 2.29 \times 10^{-11} \quad pK_a = 10.64$$

Amine	Structure	pK_a of Conjugate Acid	Amine	Structure	pK_a of Conjugate Acid
Ammonia	NH_3	9.26	4-Methylaniline	CH ₃ —NH ₂	5.08
Primary Amines			•	C113	
Methylamine	CH_3NH_2	10.64			
Ethylamine	$CH_3CH_2NH_2$	10.81	4-Chloroaniline	Cl—\(\)\—NH ₂	4.15
Cyclohexylamine	$C_6H_{11}NH_2$	10.66			
Secondary Amines			4-Nitroaniline	$O_2N - \langle - \rangle - NH_2$	1.0
Dimethylamine	$(CH_3)_2NH$	10.73	Aromatic Heterocycli	\\ //	
Diethylamine	$(CH_3CH_2)_2NH$	10.98	Аютин Пененосуси	Amines	
Tertiary Amines			Pyridine	N	5.25
Trimethylamine	$(CH_3)_3N$	9.81			
Triethylamine	$(CH_3CH_2)_3N$	10.75	Imidazole	N \	6.95
Aromatic Amines	/=\			N	
Aniline	$\langle \rangle - NH_2$	4.63		 H	

Basicità delle ammine

Ammine alifatiche ($pK_a = 10-11$) basi leggermente più forti dell'ammoniaca

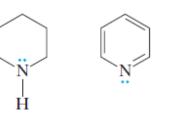
Positive charge is partially delocalized onto the alkyl group.

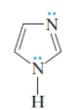
Ammine aromatiche basi decisamente Stabilizzazione per risonanza dell'ammina più deboli dell'ammoniaca C sp² dell'arile ha maggiore effetto elettron -attrattore

 $pK_a = 4.63$

Interaction of the electron pair on nitrogen with the π system of the aromatic ring

No resonance is possible with alkylamines.

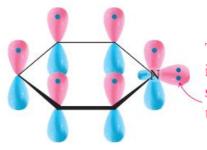

Altri sostituenti sull'anello influenzano molto la basicità


$$\ddot{N}H_{2} \longleftrightarrow \ddot{N}H_{2} \longleftrightarrow \ddot{N}$$

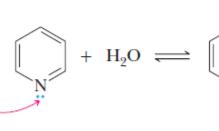
4-Nitroaniline $pK_{a} 1.0$

Basicità delle ammine

 Ammine eterocicliche aromatiche basi più deboli delle corrispondenti alifatiche


Piperidine pK_a 10.75

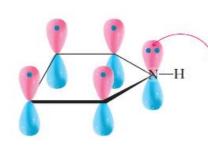
 $+ HO^-$


Aromaticity would be

ne Pyridine $pK_a 5.25$

Imidazole pK_a 6.95

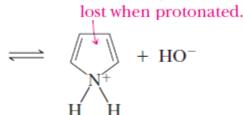
This electron pair is in an *sp*² orbital so it is not part of the aromatic sextet.



Aromaticity is maintained, even when protonated.


L'orbitale sp² è più elettronegativo e ha minore carattere di basicità

Pyridine


Pyridinium ion

This electron pair is in a 2p orbital and is part of the aromatic sextet.

Pyrrole

Energetically unfavorable due to a loss of aromaticity

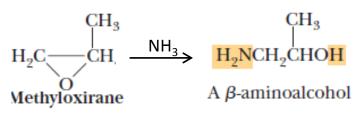
Guanidina base più forte delle altre ammine

Reazioni delle ammine con acidi

HO NH₂ + HCl
$$\xrightarrow{\text{H}_2\text{O}}$$
 HO NH₃+Cl-

(R)-Norepinephrine (only slightly soluble in water)

(R)-Norepinephrine hydrochloride (a water-soluble salt)


Esercizio: Completare la seguente reazione acido-base e scrivere il nome di reagenti e prodotti

 $PhCH_2NH_2 + CH_3COOH \longrightarrow$

Preparazione delle ammine

Da epossidi per reazione con ammoniaca e ammine

Addizione nucleofila S_N2 con apertura d'anello

Vedi Reazioni degli epossidi

Da ammidi per riduzione

N,N-Dimethylbenzamide N,N-Dimethylbenzylamine

Vedi Riduzione dei derivati degli acidi carbossilici

Da composti carbonilici per addizione di nucleofili azotati e successiva riduzione

Cyclohexanone Cyclohexylamine

Dicyclohexylamine

Vedi lezione Aldeidi e Chetoni: Addizione di nucleofili azotati e Amminazione riduttiva

Da nitrili per riduzione

$$CH_{3}CH = CH(CH_{2})_{4} \underbrace{C = N} \xrightarrow{1. \text{ LiAlH}_{4}} CH_{3}CH = CH(CH_{2})_{4} \underbrace{CH_{2}NH_{2}}$$
6-Octenenitrile
6-Octen-1-amine

Vedi Riduzione dei derivati degli acidi carbossilici

Preparazione delle ammine

Sostituzione nucleofila aromatica

4-Methylaniline 3-1 (p-Toluidine) (r

3-Methylaniline (*m*-Toluidine)

Vedi Sostituzione nucleofila aromatica

Nitrazione e successiva riduzione di composti aromatici

$$H + HNO_3 \xrightarrow{H_2SO_4} NO_2 + H_2O$$

Vedi Sostituzione elettrofila aromatica

Nitrobenzene

$$O_2N$$
 — COOH + 3 H₂ \xrightarrow{Ni} H₂N — COOH + 2 H₂O

4-Nitrobenzoic acid

4-Aminobenzoic acid

$$\begin{array}{c|c} CH_3 & CH_3 \\ \hline NO_2 & Fe, HCl \\ \hline NO_2 & NH_3^+ Cl^- \\ \hline NO_2 & NH_3^+ Cl^- \\ \end{array}$$

2,4-Dinitrotoluene

4-Methyl-1,3-benzenediamine (2,4-Diaminotoluene)

Preparazione delle ammine

Alchilazione di ammoniaca e ammine

Alchilazione di azide

$$N_3^ : N = N^+ = N^ RN_3$$
 $R - N = N^+ = N^-$

Azide ion

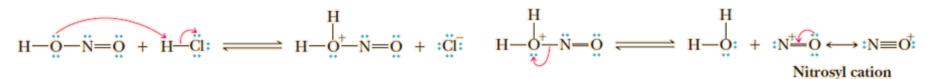
An alkyl azide

(a good nucleophile)

Benzyl chloride

Benzyl azide

Benzylamine


Cyclohexene

1,2-Epoxycyclohexane

trans-2-Azidocyclohexanol (racemic) trans-2-Aminocyclohexanol (racemic)

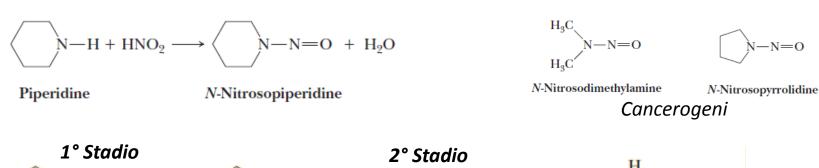
Reazione delle ammine con acido nitroso

Formazione del catione nitrosile

Ammine terziarie alifatiche

$R_1 \stackrel{\text{...}}{\underset{R_2}{\mid}} R_3 + HNO_2 \longrightarrow R_1 \stackrel{\text{...}}{\underset{R_2}{\mid}} H$

Ammine terziarie aromatiche

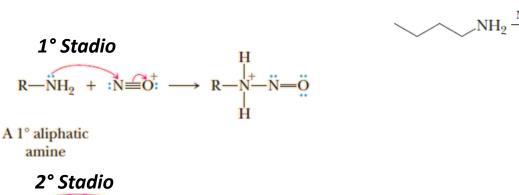

$$Me_2N$$
 \longrightarrow $\frac{1. \text{NaNO}_2, \text{HCl, 0-5°C}}{2. \text{NaOH, H}_2O}$ Me_2N \longrightarrow N =O

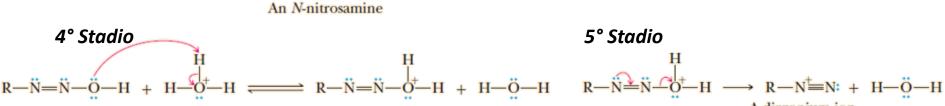
N,N-Dimethylaniline

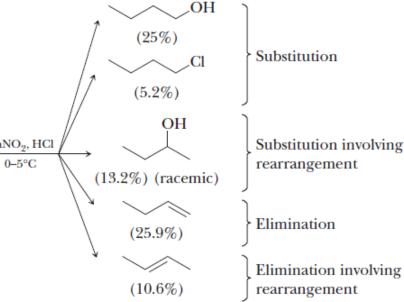
N,N-Dimethyl-4-nitrosoaniline

Nitrosazione, sostituzione elettrofila aromatica

Ammine secondarie alifatiche e aromatiche



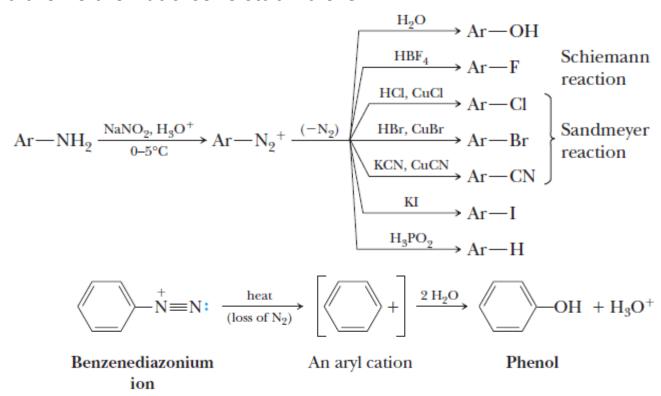

Reazione delle ammine con acido nitroso


Ammine primarie alifatiche

- Perdita di N e formazione di miscele di prodotti
- Si passa per la formazione di un sale di diazonio
- I sali di diazonio alifatici sono instabili

Sale di diazonio: ione RN₂⁺ o ArN₂⁺

3° Stadio


$$R - \stackrel{\stackrel{\longrightarrow}{N}}{=} \stackrel{\stackrel{\longrightarrow}{N}}{=} \stackrel{\stackrel{\longrightarrow}{N}}{=} H \longrightarrow R - \stackrel{\stackrel{\longrightarrow}{N}}{=} N: + H - \stackrel{\longrightarrow}{O} - H$$
A diazonium ion

6° Stadio
$$\begin{array}{ccc}
R \stackrel{\uparrow}{\longrightarrow} N^{\ddagger} & \longrightarrow & R^{\dagger} + : N = 1 \\
A \text{ diazonium ion} & A \text{ carbocation}
\end{array}$$

Reazione delle ammine con acido nitroso

Ammine primarie aromatiche

I sali di diazonio aromatici sono stabili a 0°C

Esercizio: Descrivere le reazioni che avvengono nei passaggi 1-4

$$CH_3 \qquad CH_3 \qquad COOH \qquad COOH$$

$$(1) \qquad (2) \qquad (3) \qquad (4) \qquad (4)$$

$$NO_2 \qquad NO_2 \qquad NH_2 \qquad OH$$

Esercizio: Descrivere le reazioni che avvengono nei passaggi 1-2

$$\begin{array}{c}
NH_2 \\
CI
\end{array}$$

$$\begin{array}{c}
CI
\end{array}$$

Eliminazione di Hofmann

Reazione di un sale di ammonio con base forte per formare un alchene

(Cyclohexylmethyl)trimethylammonium iodide Silver oxide (Cyclohexylmethyl)trimethylammonium hydroxide

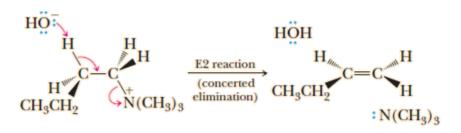
Methylenecyclohexane Trimethylamine

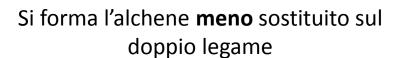
 β -Eliminazione: una reazione nella quale una piccola molecola (es. HX o H_2O) viene eliminata da C adiacenti

- Si usano basi forti
- Eliminazione concertata
- Antistereoselettiva

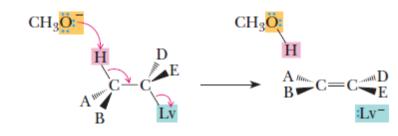
$$\begin{array}{c}
\text{Br} \\
| \\
\text{CH}_{3}\text{CH}_{2}\text{CHCH}_{3} \xrightarrow{\text{CH}_{3}\text{CH}_{2}\text{O}^{-}\text{Na}^{+}} \text{CH}_{3}\text{CH} = \text{CHCH}_{3} + \text{CH}_{3}\text{CH} = \text{CH}_{2} \\
\hline
(75\%) (25\%)
\end{array}$$

$$HO^{-}$$
 $\stackrel{+}{N}(CH_{3})_{3}$ $\xrightarrow{E2}$ $CH_{3}CH_{2}CHCH_{3}$ $\xrightarrow{E2}$ $CH_{3}CH_{2}CH=CH_{3} + CH_{3}CH_{2}CH=CH_{2} + (CH_{3})_{3}N + H_{2}O$ (5%) (95%)


Regola di Hofmann: il prodotto principale delle reazioni di β -eliminazione di un sale di ammonio è l'alchene meno sostituito sul doppio legame


Eliminazione di Hofmann

Eliminazione secondo Hofmann


VS

Eliminazione secondo Zaitsev

- Meccanismo bimolecolare
- Avviene con –H in β
- Si usano basi forti
- Eliminazione concertata
- Antistereoselettiva
- Il gruppo uscente è neutro
- Avviene di preferenza con basi stericamente ingombrate
- È governata da fattori sterici

—H and —Lv are anti and coplanar (dihedral angle 180°)

Si forma l'alchene **più** sostituito sul doppio legame

- Meccanismo bimolecolare
- Avviene con –H in β
- Si usano basi forti
- Eliminazione concertata
- Antistereoselettiva
- Il gruppo uscente è carico negativamente
- Avviene di preferenza con basi stericamente non ingombrate

Se c'è più di un –H in β in posizione anti, c'è competizione tra i due tipi di eliminazione

Eliminazione di Cope

Decomposizione termica di ammino-ossido con almeno un idrogeno in β per formare alchene e idrossilammina

- Reazione syn-stereoselettiva
- Eliminazione concertata

Se c'è più di un -H in β in posizione syn, non c'è una spiccata preferenza per uno o per l'altro, a meno che l'alchene che si forma non sia coniugato a un anello aromatico

Esercizio: Disegnare la formula di struttura del prodotto maggioritario che si ottiene da ciascuna delle seguenti β eliminazioni. Indicare quale regola segue ciascuna reazione e scrivere i nomi di reagenti e prodotti